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Vector Wave Equation 2-D-FDTD Method
for Guided Wave Problems

Michal Okoniewski, Member, IEEE

Abstract— A new compact FDTD algorithm for the full wave
analysis of inhomogeneous wave guiding structures, using two
dimensional mesh is proposed. The formulation is based on the
vector wave equation, and in contrast with previous approaches,
allows for the formulation of the algorithm in a real domain only.
Moreover, since only transverse electric fields are used, two real,
instead of six complex components have to be updated and stored,
and since they are both defined at the same mesh nodes, the
treatment of dielectric inhomogeneities is simplified. Numerical
examples validating the method are presented.

I. INTRODUCTION

NOWLEDGE of the properties of waveguides is of

importance in the microwave and millimeter waves
techniques. From the variety of different, both numerical and
analytical methods developed in the past decades, time domain
techniques have emerged as particularly attractive, since they
are fast, relatively simple to implement, capable of solving
almost arbitrary waveguide geometries, and are well suited
for implementation on massively parallel computers.

Wavegunides are assumed to be homogeneous along the
propagation (say 2) direction, and support modes with the
propagation constants independent of z. That means that the
2 derivatives of fields can be replaced by —j3. This idea
has recently been exploited in [2]-[5] where both FDTD and
TLM compact schemes using a two-dimensional mesh were
derived. These papers were followed by [6] where the stability
and dispersion properties of the compact FDTD method were
considered.

In [1], a different approach was presented. A two-
dimensional FDTD method was extended to handle structures,
which can be described by a two-dimensional vector wave
equation. The authors observed that uniform waveguides
belong to this class of boundary value problems and used their
technique to compute dispersion characteristics of an image
guide.

Except for [1], in all of the aforementioned papers, sub-
stitution of % with —j3 resulted in a formulation of the
algorithm in the complex domain. This doubled computer
storage requirements, and substantially intensified numerical
computations.

In [1], the complex notation was avoided, but at the expense
of two-fold increase in the number of equation which had to
be solved.
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(a) Dielectric slab loaded rectangular waveguide. (b) Shielded image
guide. ¢ = 2.5, kgd =5, af/d = 5,b/d = 2.5.

Fig. 1.

In this letter, a novel compact FDTD method is proposed.
It is based on a vector wave rather than Maxwell equations
and allows for the formulation of the algorithm in the real
domain only. Moreover, it uses only transverse electric field
components, hence only two real (but in two consecutive time
steps), instead of six complex quantities have to be stored
and updated. These features yield substantial computer storage
savings.

Another advantage of the method is that, as opposed to the
traditional FDTD approaches, both field components used in
this formulation are defined at the same mesh nodes, which
simplifies the treatment of waveguide inhomogeneities.

II. FORMULATION

Using Maxwell’s curl equations the following wave equa-
tion is obtained:

e 0% o
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V(V-E)-VE= -2 F,

ey
where €, = €,(z,y) is the relative permittivity.

The divergence of the electric field in this formula includes
-3‘—9; term, which can potentially introduce imaginary numbers
into the algorithm.

Maxwell’s divergence equation can however be used to
derive the following relation:

1
VZEZ = _—G—Vt . ETEt. (2)

This relation can now be used in calculations of the divergence

. term in (1). Thus, first-order z derivatives (responsible for the

complex notation in [2]-[6]) can be avoided altogether, and
the algorithm be formulated using real numbers only.

Combining (2) and (1), the following vector wave equation
is obtained:
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TABLE 1
NorMALIZED Prase Constants (3/ko) ComPuTED BY TRM AND ERRORS INTRODUCED BY PrOPOSED 2-D-FDTD
METHOD RECTANGULAR WAVEGUIDE 22.86 X 10.16mm LoADED WITH A DELECTRIC SLAB (FIG 1(a)), FOR
VARIOUS SLAB WIDTHS AND PErMITTIVITIES MODE TE], ComputeD AT 8 GHz, MODE TES, ar 15 GHz

Slab Width 4 mm 8 mm 12 mm 16 mm
FDTD FDTD FDTD FDTD
Mode ¢ TRM error % TRM error % TRM error % TRM error %
TEf, 2.56 0.9573 -0.25 1.1791 -0.18 1.2957 +0.06 1.3523 +0.19
TE{, 4.00 1.2485 -0.32 1.5747 +0.02 1.7249 +0.45 1.7956 +0.21
TET, 10.00 2.2580 +0.13 2.7617 +0.08 2.9385 +0.36 3.0168 +0.17
TEZ, 2.56 0.5457 -0.13 0.8486 +0.15 1.1267 -0.36 1.2731 +0.30
TEZ, 4.00 0.6177 +0.00 1.2082 +0.34 1.5630 -0.28 1.7218 +0.17
TES, 10.00 1.2464 -0.08 2.4978 +0.03 2.8321 +0.12 2.9646 +0.15
. s s s TABLE I
from which a pair of coupled equation follows: PHASE CONSTANTS OF A SHIELDED RECTANGULAR IMAGE
Gumme—F16  1(b). NUMERICAL ResuLTs CoMPUTED BY COUPLED
o 1 €r 52 MoDE METHOD {7], AND RELATIVE DIFFERENCE INTRODUCED BY
(V2 — ,32)E$ + V(B - —Vie,) = —Q—@Egc, ) IEEM-FTT METHOD [8] AND THE ProPOSED 2-D-FDTD METHOD
€ c
{ 82 Mode CMM [7] TEEM]8] FDTD
€ —
(V2 = B2)Ey, + Vy(E: - —Vier) = —;—a—zEy (5) EY, 1.529 +0.32% +0.20%
€ ¢t ot BY, 1.459 +0.06% +0.05%

Discretization of these equations, using for example central
difference scheme, provides the FDTD algorithm. This for-
mulation is particularly useful, when e,(z,y) is a continuous
function of (x,y) coordinates———é Ve, can be precomputed for
a given waveguide geometry prior to the actual simulation.

When the waveguide under consideration comprises regions
of homogeneous dielectric materials, and thus e,.(x,y) is
a noncontinuous function, (3) may be rewritten so that no
gradients of the permittivity are present in the algorithm:

€ 02 =
c2 o2

— — 1 g
(V2= BHE - V(V,-E, — —VireBy) = (6)

It should be noticed that the gradient term in the above
equations vanishes inside the homogeneous subregions of the
waveguide. This fact, if utilized in numerical implementation,
leads to a high speed method (4 multiplications +18 additions
per node in a homogeneous region)

Equation (6) yields a pair of coupled equations:

1 1
(Vo =Vaer + V2 — %) Ey — Viu(Vy — —Vyer)Ey
e 07

= c_zﬁEma (7)
1 1
(Vye‘vyer + vazv - /62)Ey - V(V, - e_vwer)Ez
e 02

= E &)

2oV

In the numerical implementation (6) is discretized, using
central difference scheme. Terms with mixed derivatives are
transformed to finite difference with 26x, 26y steps, whereas
others using 0x,6y. This required ¢, to be known in a mesh
twice as dense as the one used for E-field, which ensures better
simulation of a real structure in the program. The stability
condition of this method has not been derived yet, instead, the
one introduced in [6] was successfully applied.

HI. NUMERICAL RESULTS

The proposed method was extensively tested, on a number
of different structures, ranging from an ordinary rectangular
waveguide, to dielectric guides and image guides. There
were no convergence problem with air and dielectric loaded
rectangular waveguides. A dielectric slab loaded rectangular
guide was selected as a good test structure, since its phase
constant can be readily computed using transverse resonance
method (TRM).

In Table I, phase constants of the slab rectangular waveg-
uides, obtained using TRM and the present method are pre-
sented. It is worthwhile to notice that although a relatively
coarse mesh was used (N = 30) and a high gradient of
dielectric properties existed in this structure, the proposed
method provided excellent accuracy.

The method was subsequently used to compute phase con-
stants of a dielectric image guide. The results are compared in
Table II with the data reported in [7], [8] where coupled mode
and IEEM~FFT techniques were used. respectively. Again,
though rather coarse mesh was used (30 points in the direction
of the wide wall) the result obtained compare well with the
published data.

IV. CONCLUSION

In summary, this letter introduces a new compact 2-
D-FDTD algorithm. It is based on the vector wave equation,
and allows for the formulation of the algorithm in a real
domain only. Only transverse electric fields are used, hence
two real (in two consecutive time steps) instead of six complex
quantities have to be updated and stored. Both transverse field
quantities are defined in the same mesh, which simplifies the
treatment of the dielectric inhomogeneities. Numerical results
validating the method are presented. The method was found
numerically stable. A similar formulation can be derived using
magnetic rather than electric fields.
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